CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, UNIVERSITY OF GUELPH, GUELPH, ONTARIO, CANADA

Organoantimony Compounds. III.^{1,2} Far-Infrared and Raman Spectroscopic Studies on Triorganoantimony(V) Derivatives, R₃SbX₂

BY R. G. GOEL,* E. MASLOWSKY, JR., AND C. V. SENOFF

Received November 30, 1970

The infrared and Raman spectra (600-100 cm⁻¹) are reported for the series R_3SbX_2 ($R = CH_3$, C_3H_5 ; X = F, Cl, Br, NCS, ONO₂, CH₃COO, and CD₃COO). Assignments are made with particular emphasis on the Sb-C and Sb-X stretching vibrations. To aid in these assignments approximate normal-coordinate calculations were performed on (CH₃)₃SbF₂, (CH₄)₃SbCl₂, and (CH₃)₃SbBr₂, assuming the methyl groups to be single atoms and using a modified Urey-Bradley force field. Using previously reported vibrational data similar calculations were also performed on SbCl₅, (CH₄)₅Sb, and (CH₃)₅Sb²⁺. The force constants obtained from these calculations are used to discuss the relative strengths of the Sb-C and Sb-X bonds.

Introduction

Infrared spectroscopy and X-ray diffraction methods have been used to elucidate the structures of R_3SbX_2 organoantimony derivatives. A trigonal-bipyramidal structure in which the antimony and methyl carbon atoms are coplanar and the halogen atoms are in the axial positions has been established for trimethylantimony dichloride, dibromide, and diiodide.³ Crystallographic studies have shown a similar structure for triphenylantimony dichloride.⁴ Recently infrared spectroscopic studies on the trimethyl- and triphenylantimony difluorides,^{5,6} dinitrates,⁵⁻⁷ diacetates,^{6,7} and dipseudohalides⁸ have indicated trigonal-bipvramidal structures for these compounds. Until the present, however, relatively few data have been available for the Sb-C and Sb-X stretching and bending vibrations for these compounds. We have investigated the far-infrared $(600-100 \text{ cm}^{-1})$ and Raman spectra $(600-100 \text{ cm}^{-1})$ cm^{-1}) of several R₃SbX₂ derivatives (R = CH₃, C₆H₅; $X = F, Cl, Br, ONO_2, CH_3COO, CD_3COO, NCS).$ To aid in the assignment of these spectra, approximate normal-coordinate analyses have been carried out on trimethylantimony difluoride, dichloride, and dibromide using a modified Urey-Bradley force field.⁹ A preliminary report of these results has been published.¹⁰

Experimental Section

Preparation of Compounds.—Trimethylantimony was prepared by the method of Morgan and Davies.¹¹ Triphenylantimony was obtained from Organometallics, Inc., and recrystallized successively from ethanol, carbon tetrachloride, and a mixture of chloroform and petroleum ether (bp $35-60^{\circ}$). The dihalides,^{§,6} dinitrates,[§] and diisothiocyanates⁸ were prepared using previously reported procedures. The diacetates and their deuterated analogs were prepared by the metathetical reaction between trimethyl- or triphenylantimony dibromide and silver acetate in methanol or benzene and recrystallized from hot

(1) Presented in part at the 160th National Meeting of the American Chemical Society, Chicago, Ill., Sept 1970.

(2) Part II: R. G. Goel, Can. J. Chem., 47, 4607 (1969).

(3) A. F. Wells, Z. Kristallogr., Kristallogeometrie, Kristallphys., Kristallchem., 99, 367 (1938).

(4) T. N. Polynova and M. A. Porai-Koshits, J. Struct. Chem. (USSR), 7, 146 (1960).

- (5) H. C. Clark and R. G. Goel, Inorg. Chem., 5, 998 (1966).
- (6) G. O. Doak, G. G. Long, and L. D. Freedman, J. Organometal. Chem., 4, 82 (1965), and references therein.

(7) M. Shindo and R. Okawara, *ibid.*, 5, 537 (1966).

- (8) R. G. Goel and D. R. Ridley, Inorg. Nucl. Chem. Lett., 7, 21 (1971).
- (9) R. A. Condrate and K. Nakamoto, Bull. Chem. Soc. Jap., **39**, 1108 (1966).

(10) R. G. Goel, E. Maslowsky, Jr., and C. V. Senoff, Inorg. Nucl. Chem. Lett., 6, 833 (1970).

(11) G. T. Morgan and G. R. Davies, Proc. Roy. Soc., Ser. A, 110, 523 (1926).

petroleum ether (bp 35-60). Deuterated silver acetate was prepared by dissolving silver oxide in CD₃COOD, followed by recrystallization under reduced pressure. The crystals were washed with benzene and dried under vacuum. The purity of all compounds was established by carbon and hydrogen analyses and comparison with previously reported infrared spectra⁵⁻⁸ and melting points.⁶⁻⁸

Spectral Measurements.—The infrared spectra were recorded on a Beckman IR-12 spectrophotometer $(600-250 \text{ cm}^{-1})$ and a Hitachi Perkin-Elmer FIS-3 spectrophotometer $(350-100 \text{ cm}^{-1})$. Both were calibrated using polyethylene film and water vapor. The samples were prepared as Nujol mulls on polyethylene or CsI plates. The frequencies are accurate to $\pm 2 \text{ cm}^{-1}$. The Raman spectra were recorded on a Spex-Ramalog spectrophotometer equipped with an argon ion laser source. The spectra were measured on powdered samples in glass capillary tubes and have an accuracy of $\pm 2 \text{ cm}^{-1}$.

Representative infrared spectra are presented in Figures 1 $(600-200 \text{ cm}^{-1})$ and 2 $(250-100 \text{ cm}^{-1})$ for $(CH_3)_{\delta}SbF_2$, $(CH_3)_{\delta}SbEl_2$, and $(CH_3)_{\delta}SbBr_2$, while Figure 3 presents the Raman spectra $(600-100 \text{ cm}^{-1})$ for the same three compounds.

Procedure of Calculation

Assuming the methyl groups to be single atoms of mass 15, the molecules $(CH_3)_3SbX_2$ (X = F, Cl, Br) have a local symmetry of D_{3h} . Figure 4 illustrates the molecular model and internal coordinates used to express the potential energy. The representation for the normal vibrations of a D_{3h} (CH₃)₃SbX₂ structure is $\Gamma_{vib} = 2 A_1' + 2 A_2'' + 3 E' + E''$ and the 14 internal coordinates used lead to two redundancies of A_1' symmetry. (Table I gives symmetry coordinates for the R_3MX_2 molecule.)

A Urey-Bradley force field,¹² modified with an angleangle interaction force constant⁹ was used in the calculation.

The potential energy was given by eq 1. The quan-

$$2V = \sum_{i=1}^{5} [2K'_{M-R}r(\Delta r_i) + K_{M-R}(\Delta r_i)^2] + \sum_{i=1}^{2} [2K'_{M-X}d(\Delta d_i) + K_{M-X}(\Delta d_i)^2] + \sum_{i$$

(12) T. Shimanouchi, J. Chem. Phys., 26, 594 (1957).

Figure 1.—Infrared spectra (600–200 cm⁻¹) of (A) (CH₃)₈SbF₂, (B) (CH₃)₈SbCl₂, and (C) (CH₃)₈SbBr₂.

tities K' and H' vanish since they can be expressed in terms of F'. F' was taken as -0.1F by making the usual assumption that the repulsive energy between the nonbonded atoms is proportional to r^{-6} .

A matrix equation of the form $|GF - E\lambda| = 0$ was constructed for each species and solved by using an IBM 360/50 computer. In addition to calculating the skeletal modes for the series $(CH_3)_3SbX_2$ (X = F, Cl, Br) previously reported vibrational data were used to perform similar calculations on $SbCl_5$,⁹ $(CH_3)_3PF_2$,¹³ PF_5 ,¹⁴ $(CH_3)_3Sb^{2+}$,¹⁵ and $(CH_3)_5Sb$.¹⁶

The force constants for $SbCl_5$ and PF_5 were taken

(14) R. R. Holmes, R. M. Deiters, and J. A. Golen, Inorg. Chem., 8, 2612 (1969).

	TA	BLE	εI		
Symmetry	COORDINATES	IN	THE	R_8MX_2	Molecule
				Sym	Type

S_1	$= (1/\sqrt{3})[\Delta r_1 + \Delta r_2 + \Delta r_3]$	A1'	$\nu_{s}(M-R)$
S_2	$= (1/\sqrt{2})[\Delta d_1 + \Delta d_2]$	A_1'	$\nu_{\rm s}({\rm M-X})$
S_3	$= 1/\sqrt{3}[\Delta\alpha_{12} + \Delta\alpha_{23} + \Delta\alpha_{13}]$	A_{I}'	Redun
S_4	$= 1/\sqrt{6}[\Delta\beta_{15} + \Delta\beta_{25} + \Delta\beta_{35} +$	A_1'	Redun
	$\Delta\beta_{14} + \Delta\beta_{24} + \Delta\beta_{34}]$		
S_5	$= (1/\sqrt{2})[\Delta d_1 - \Delta d_2]$	$A_2^{\prime\prime}$	$\nu_{a}(M-X)$
S_6	$= (1/\sqrt{6})[\Delta \beta_{15} + \Delta \beta_{25} + \Delta \beta_{35} -$	$A_2^{\prime\prime}$	$\delta_{\perp}(M-R)$
	$\Delta\beta_{14} - \Delta\beta_{24} - \Delta\beta_{84}]$		
Ŝ7A -	$= (1/\sqrt{6})[2\Delta r_1 - \Delta r_2 - \Delta r_3]$	$\mathbf{E}_{\mathbf{A}}'$	$\nu_{\rm a}({\rm M-R})$
S_{7B}	$= (1/\sqrt{2})[\Delta r_2 - \Delta r_3]$	E _B '	$\nu_{a}(M-R)$
S_{8A}	$= (1/\sqrt{6})[2\Delta\alpha_{23} - \Delta\alpha_{12} - \Delta\alpha_{13}]$	E_{A}'	$\delta_{ }(M-R)$
S_{8B}	$= (1/\sqrt{2})[\Delta \alpha_{13} - \Delta \alpha_{12}]$	E _B '	$\delta (M-R)$
S_{9A}	$= (1/\sqrt{12})[2\Delta\beta_{15} - \Delta\beta_{25} - \Delta\beta_{35}]$	$\mathbf{E}_{\mathbf{A}}'$	$\delta(M-X)$
	$+ 2\Delta\beta_{14} - \Delta\beta_{24} - \Delta\beta_{34}]$		
S_{9B}	$= (1/2) [\Delta \beta_{25} - \Delta \beta_{35} + \Delta \beta_{24} -$	E _B '	$\delta(M-X)$
	$\Delta eta_{34}]$		
S_{10A}	$= (1/\sqrt{12})[2\Delta\beta_{15} - \Delta\beta_{25} - \Delta\beta_{35}]$	$E_{A}^{\prime\prime}$	$\rho_{\rm r}({\rm MR}_3{\rm X}_2)$
	$-2\Delta\beta_{14}+\Delta\beta_{24}+\Delta\beta_{34}]$		

$$S_{10B} = (1/2)[\Delta\beta_{25} - \Delta\beta_{85} - \Delta\beta_{24} + E_{B}'' \qquad p_{r}(MR_{3}X_{2}) \\ \Delta\beta_{84}]$$

Figure 2.—Infrared spectra $(250-100 \text{ cm}^{-1})$ of (A) (CH₃)₃SbF₂, (B) (CH₃)₃SbCl₂, and (C) (CH₃)₃SbBr₂.

from a previous calculation⁹ and adjusted to fit the latest vibrational assignments. For $(CH_3)_3Sb^{2+}$, trial values of K(Sb-R), H(R-Sb-R), and $F(R \cdots R)$ were estimated from previous calculations on other organometallic compounds.^{17,18} They were then adjusted to give the best fit for the three observed bands. The values of K(Sb-R), H(R-Sb-R), and $F(R \cdots R)$ obtained for $(CH_3)_3Sb^{2+}$ were transferred to $(CH_3)_5Sb$ and the series $(CH_3)_3SbX_2$ (X = F, Cl, Br). Reasonable estimates were then made for the remaining force constants. The value of $F(\mathbf{R}\cdots\mathbf{R})$ was constrained to that obtained for $(CH_3)_3Sb^{2+}$. Since $H_{\alpha\beta}$ did not improve the results for the series $(CH_3)_3SbX_2$ (X = F, Cl, Br) it was constrained to zero. The force constants used for $(CH_3)_3PF_2$ were chosen in a similar manner to that described above.

The bond lengths and angles used are listed in Table

(18) W. M. Scovell and R. S. Tobias, ibid., 9, 945 (1970).

⁽¹³⁾ A. J. Downs and R. Schmutzler, Spectrochim. Acta, 23, 681 (1967).

⁽¹⁵⁾ A. J. Downs and I. A. Steer, J. Organometal. Chem., 8, P23 (1967).

⁽¹⁶⁾ A. J. Downs, R. Schmutzler, and I. A. Steer, Chem. Commun., 221 (1967).

⁽¹⁷⁾ M. G. Miles, J. H. Patterson, C. W. Hobbs, M. J. Hopper, J. Overend, and R. S. Tobias, *Inorg. Chem.*, 7, 1721 (1968).

2574 Inorganic Chemistry, Vol. 10, No. 11, 1971

 $\begin{array}{c} \mbox{Figure 3.--Raman spectra (600-100 cm^{-1}) of (A) (CH_{3})_8 SbF_{2,} (B) \\ (CH_{3})_8 SbCl_{2,} \mbox{ and } (C) (CH_{3})_8 SbBr_{2.} \end{array}$

II.^{3,13,19,20} The best set of force constants obtained for the antimony compounds is listed in Table III. Table IV compares the observed frequencies for these compounds with those calculated using these sets of force constants. The potential energy distribution for the series $(CH_3)_3SbX_2$ (X = F, Cl, Br) is shown in Table V.

Results and Discussion

Vibrational Assignments.—The assignment of the skeletal vibrations for the series R_3SbX_2 ($R = CH_3$, C_6H_5 ; X = F, Cl, Br, ONO₂, CH₃COO, NCS) is divided into two sections. The first deals with the methyl compounds and the second with the phenyl compounds.

Methyl Compounds.—The infrared and Raman spectra for all of the methyl compounds are very similar.

Figure 4.—Structure and internal coordinates of a trigonalbipyramidal R₃MX₂ molecule.

TAE	BLE II								
Molecular Parameters ^a									
Compd	Bond	Length, Å							
$(CH_3)_3SbF_2$	$Sb-F^{b}$	2.14							
	Sb-C°	2.15							
$(CH_3)_3SbCl_2$	Sb-Cl ^d	2. 53							
	$Sb-C^d$	2.15							
$(CH_3)_3SbBr_2$	$Sb-Br^d$	2.6 3							
	$Sb-C^d$	2.15							
$(CH_3)_5Sb, (CH_3)_3Sb_{aq}^{2+}$	Sb-C ^e	2.15							
SbCl5	$Sb-Cl_{axial}$	2.43							
	$Sb-Cl_{eq}f$	2.31							
$(CH_3)_8 PF_2$	$P-F^{g}$	1.68							
	$P-C^{g}$	1.80							
PF_5	$P-F_{axial}^h$	1,577							
	$P-F_{na}h$	1.534							

 $[a \text{ R}-\text{M}-\text{R} = 120^\circ; \text{ R}-\text{M}-\text{X} = 90^\circ$. $b [2.37 \text{ (av of Sb-Cl in SbCl_5)}]/[2.53 \text{ (Sb-Cl in (CH_3)_3SbCl_2)}] = [~2.00 \text{ (av SbF in SbF_5)}]/[x (Sb-F in (CH_3)_3SbF_2)]$. $c \text{ Taken to be the same as Sb-C in (CH_3)_3SbCl_2}$. d Reference 3. $e \text{ Average Sb-C taken to be the same as Sb-C in (CH_3)_3SbCl_2}$. f Reference 19. d Reference 19. d Reference 19. d Reference 19. d Reference 20.

Figures 1–3 illustrate the basic features observed for all members of this series. The assignments for the methyl compounds are presented in Table VI. The asymmetric Sb–CH₃ stretching mode (ν_a (Sb–CH₃)) appears as a strong band in the infrared spectrum and as a medium-intensity band in the Raman spectrum at *ca*. 570–590 cm⁻¹. For D_{3h} symmetry the ν_s (Sb–CH₃) mode is expected to be only Raman active. It is observed as a very strong band between 550 and 525 cm⁻¹ in the Raman spectra but is absent in the infrared spectra. Therefore, the methyl carbon atoms and antimony atom are coplanar for the methyl series.

The $\nu_{a}(\text{Sb-F})$ mode is observed as a strong infrared band at 480 cm⁻¹, while the $\nu_{s}(\text{Sb-F})$ mode is observed as a weak Raman band at 465 cm⁻¹. The $\nu_{a}(\text{Sb-Cl})$ mode appears at 280 cm⁻¹ and the $\nu_{s}(\text{Sb-Cl})$ mode at 272 cm⁻¹. The $\nu_{a}(\text{Sb-Br})$ mode is not as readily assigned. The $\nu(\text{Sb-Br})$ modes have been assigned between 250 and 222 cm⁻¹ for SbBr₃.²¹⁻²³ One would ex-

- (21) P. W. Davis and R. A. Oetjen, J. Mol. Spectrosc., 2, 253 (1958).
 (22) J. C. Evans, *ibid.*, 5, 343 (1960).
- (22) J. C. Byans, 1994, 9, 616 (1996).
 (23) A. T. Kozulin, Opt. Spektrosk., 18, 337 (1965).

⁽¹⁹⁾ M. Rouant, Ann. Phys., 14, 78 (1940).

⁽²⁰⁾ K. W. Hansen and L. S. Bartell, Inorg. Chem., 4, 1775 (1965).

	TABLE III	
/ Unry_	BRADIEN FORCE CONSTANTS (NOWN /Å) FOR P. MY. THE MOLECHIES	

	· URE 1-	-DRADLEY FORC	E CONSTANTS (MD	IN/A) FOR Rainia	2 I YPE MOLECU	LES	
	K(M-R)	K(M-X)	$H_{\alpha}(R-M-X)$	$H\beta(R-M-X)$	$F(\mathbf{R}\cdots\mathbf{R})$	$F(\mathbf{R}\cdots\mathbf{X})$	Ηαβ
$(CH_3)_3Sb_{aq}^{2+}$	2.44		0.053		0.054		• • •
$(CH_3)_3SbF_2$	2.39	2.02	0.053	0.109	0.054ª	0.145	0.00ª
(CH ₃) ₃ SbCl ₂	2.35	1.11	0.045	0.067	0.054^{a}	0.109	0.00ª
$(CH_3)_3SbBr_2$	2.29	0.94	0.043	0.054	0.054^{a}	0.087	0.00ª
(CH ₃) ₅ Sb	1.90	1.40	0.034	0.096	0.054ª	0.087	0.025
SbCl ₅	2.15	1.80	0.057	0.080	0.090	0.132	0.042

^a Constrained.

TABLE IV

		The second secon	
UBSERVED AND VALCUL.	ATED PREGUENCIES (CM ··	FOR SEVERAL IRIGONAL-BIPVRAMID	I. ANTIMONY LOMPOUNDS
Oppareind mild onneed		FOR OBVERIE IRIOOTINE DIT TRIME	

Principal	ncipalSbCl5		bCl5	~(CH3)3Sbag2+~		-(CH3)3SbF2-		(CH3)3SbCl2		(CH3)3SbBr2		(CH3)6Sb	
contribution ^a	Species	Calcd	Obsd ⁹	Calcd	Obsd ¹⁵	Calcd	Obsd	Calcd	Obsd	Calcd	Obsd	Calcd	Obsd ¹⁶
$\nu_{\rm s}({\rm MR})$	A_1'	354	356	542	536	554	546	541	538	533	527	494	493
$\nu_{s}(MX)$	A_1'	307	307			441	465	249	272	152	169	411	414
$\nu_{a}(MX)$	$A_2^{\prime\prime}$	383	$380 \\ 387$			503	480	305	280	229	212	458	456
$\delta_{\perp}(MR)$	$A_2^{\prime\prime}$	154	154			233	220	204	188	178	170	205	213
$\nu_{\rm a}({\rm MR})$	$\mathbf{E'}$	400	398	574	582	581	590	572	580	563	570	517	516
$\delta_{ }(MR)$	E'	74	74	166	166	156	158	159	158	156	156	109	108
$\delta(\mathbf{MX})$	$\mathbf{E'}$	172	172	:		188	200	103	126	95	b	202	195
$\rho_r(MR_3X_2)$	$\mathbf{E''}$	162	165			261	245	203	173	175	Ь	236	239

^a Description of abbreviations: ν , stretching; δ , bending; δ_{\perp} , out-of-plane bending; δ_{\parallel} , in-plane bending; ρ_r , rocking; s, symmetric; a, asymmetric. ^b Not observed.

TABLE V POTENTIAL ENERGY DISTRIBUTION FOR THE SERIES $(CH_3)_3SbX_2$ (X = F, Cl, Br)

				A1' \$	Species					
Syn	n			Ob	sd freq,	cm -1		·		
coor	d	546 465		53	8	272	527		169	
		-(CH3)8	SbF2	~(0	CHs)sSb	Cl2	~-(C	H3)3Sbl	3r2-	
S_1		1.00	0.00	1.0	00	0.00	1.00	כ	0.00	
S_2		0.00	1.00	0.0	00	1.00	0.00)	1.00	
				$A_2^{\prime\prime}$ S	Species					
				Ob	sd freq.	cm -1				
Syn	ym 480 220		220	280		188	188 212		170	
coor	ord (CH3) SbF2			~(0	CH:):Sb	C12-	←(CH3)3SbBr2			
S_{5}		1.00	0.00	1.00 0.0		0.00	1.00	0.29		
S_6		0.00	1.00	0.0	0.00		0.0	7	1.00	
				E'S	pecies					
				Obs	d frea. a	m -1				
Sym	590	200	158	580	158	126	580	156	95^a	
coord		-(CH ₃) ₃ Sb	F2	(C	CH3)3Sb	C12	(C	Hs)3Sb	Br2	
S1	1.00	0.00	0.00	1.00	0.00	0.00	1.00	0.00	0.00	
S_8	0.00	0.44	1.00	0.00	0.10	0.00	0.00	1.00	0.00	
S,	0.00	1.00	0.43	0.00	0.00	1.00	0.00	0.00	1.00	

^a Calculated frequency.

pect the $\nu(Sb-Br)$ modes for $(CH_3)_3SbBr_2$ to occur at lower frequencies than in SbBr₃ as is the case when the ν (Sb-Cl) modes of SbCl₃²¹ are compared with those of (CH₃)₃SbCl₂. A very strong Raman band for (CH₃)₃-SbBr₂ at 169 cm⁻¹ is assigned to the ν_{s} (Sb-Br) mode since no other bands are present which could be assigned to this mode. The assignment of $\nu_a(Sb-Br)$ is complicated by the presence of two infrared bands which could be assigned to this mode. One band occurs at 212 cm^{-1} and the other at 170 cm^{-1} . The outof-plane Sb–C bending mode (δ_{\perp} (Sb–C)) is expected to be in the same region and to have the same symmetry (A_2'') as the $\nu_a(Sb-Br)$ mode. Since both modes are in the same region and are also of the same symmetry, coupling is possible. The normal-coordinate calculations show this to be the case. The 212-cm⁻¹ band is assigned to the $\nu_a(Sb-Br)$ mode, and the 170-cm⁻¹ band, to the $\delta_{\perp}(\text{Sb-C})$ mode. The $\nu_a(\text{Sb-ONO}_2)$ and ν_{a} (Sb-NCS) modes appear at 280 and 268 cm⁻¹, respectively. The $\nu_a(Sb-O)$ mode of $(CH_3)_3Sb(CH_3COO)_2$ is assigned at 279 cm⁻¹ and is observed to shift to 268 cm⁻¹ on deuterating the acetate groups. The δ_{\perp} (Sb–C) modes for all of the methyl compounds show a variation in position. This perhaps can be attributed to the steric effect of the axial groups. The in-plane Sb–C bending modes (δ_{\parallel} (Sb–C)), however, appear at approximately the same position in all of the methyl compounds. Recently, there has been some disagreement as to the assignment of the $\delta(MX_{eq})$ and $\delta(MX_{axial})$ modes in MX_5 trigonal-bipyramidal compounds.^{14,24,25} This will be considered when the normal-coordinate calculations are discussed (*vide infra*). The Raman-active $\rho_{r}(MR_{3}X_{2})$ mode is also assigned.

Phenyl Compounds.—The vibrational spectra of the $(C_6H_5)_3SbX_2$ compounds are more complex than those of the corresponding methyl derivatives. The assignments for the phenyl compounds have been made by comparing their spectra with those of the corresponding methyl compounds and with the recent assignments made for $(C_6H_5)_3Sb.^{26}$ Therefore, rather than speaking of pure Sb–C modes, reference will be made to metal- or "X-sensitive" vibrations.²⁷

The stretching of the phenyl-metal bond contributes to three of the six "X-sensitive" vibrations (the q, r, and t modes). It has been suggested that while for light elements the major contribution of the ν (M-C) mode may be to the q vibration;²⁸ for heavier elements such as Ge, As, and Sb it is to the t vibration.²⁹ Therefore, the t mode will loosely be referred to as the ν (Sb-C) vibration. In the triphenylantimony compounds the t mode consists of two bands, both of which are infrared and Raman active. A local symmetry of D_{3h} for the trimethylantimony compounds permits only one infraredactive ν (Sb-C) mode. The infrared activity of both phenyl " ν (Sb-C)" modes can be attributed in part to a

(24) L. S. Bartell, Inorg. Chem., 9, 1594 (1970).

(25) R. R. Holmes and J. A. Golen, ibid., 9,1596 (1970).

(26) K. Shobatake, C. Postmus, J. R. Ferraro, and K. Nakamoto, Appl. Spectrosc., 23, 12 (1969).

(27) D. H. Whiffen, J. Chem. Soc., 1350 (1956).

(28) J. C. Lockhart, *ibid.*, A, 1552 (1966).

(29) K. M. Mackay, D. B. Sowerby, and W. C. Young, Spectrochim. Acta, Part A, 24, 611 (1968).

			Vibrai	TIONAL SPE	ectra (600	–100 см-	¹) of (CH_3)) $_3\mathrm{SbX}_2$ Set	RIES ^a			
		SbF ₂		SbCl2	~(CH3)38	SbBr2	(CH₃)₃Sb	(ONO ₂) ₂	(CH₃)₃Sb	(NCS)2-	(CH _s) ₃ Sb(C	H3COO)2
Description	Ir	R	Ir	R	Ir	R	Ir	R	Ir	R	Ir	R
$\nu_{e}(Sb-C)$ $\nu_{s}(Sb-C)$	590 vs	591 m 546 vs	580 vs	580 m 538 vs	570 vs	570 m 527 vs	582 s	586 m 535 vs	584 s	585 m 535 vs	578 vs	578 m 538 vs
$\nu_{\rm e}({\rm Sb-F})$ $\nu_{\rm e}({\rm Sb-F})$	480 vs	462 w									507 vs	512 w
$\delta_{s}(NCS)$ $\delta_{s}(NCS)$			990						492 s 482 m	492 w 483 vw		
$\nu_{\rm s}({\rm Sb-Cl})$ $\nu_{\rm s}({\rm Sb-Cl})$			280 VS	272 vs			0.75				070	
$\nu_{a}(Sb-O) \\ \nu_{s}(Sb-O) \\ \nu_{a}(Sb-N) \\ \nu_{s}(Sb-N) $							275 vs	273 w	268 vs		279 vs	275 vs
		$245 \mathrm{m}$						238 w		194 m	218 m	223 m
$v_{a}(Sb-Br)$					212 s	160 ττς						
$\delta_{\perp}(Sb-DI)$	220 vs	220 m	188 vs	173 m	170 vs	105 45	202 s	163 w	180 s		212 s	168 m
$\delta_{ }(Sb-C)$ $\delta(Sb-X)$	158 m 200 vs	145 m	158 m 126 s	m	156 s		156 s 128 s	200 11	152 m		156 m 128 s	125 m
- (/												

TABLE VI

a Key: vs, very strong; vw, very weak; s; strong; w, weak; m, medium; ν_a , asymmetric stretch; ν_s , symmetric stretch; δ , out-ofplane bend; δ_{\parallel} , in-plane bend; ir, infrared; R, Raman.

TABLE VII

		VIBRA	TIONAL S	PECTRA (600-100	CM ^{−1}) OF	$(C_6H_5)_3St$	\mathbf{X}_2 Seri	ES^{a}			
	(C6H5))₃SbF₂—	$-(C_6H_5)$	sSbCl2-	$-(C_{\delta}H_{\delta})$	3SbBr2	(C ₆ H ₅) ₃ Sb	$(ONO_2)_2$	(C6H5)3Sb	$(NCS)_2$	(C6H5)3Sb(CH3COO)2
Description	Ir	R	Ir	R	Ir	R	Ir	R	Ir	R	Ir	R
											540 vs	
$\nu_{a}(Sb-F)$	509 vs											
$\nu_{s}(Sb-F)$	491 w	485 s							i			
$\delta_{a}(NCS)$									496 w	496 s		
$\delta_{s}(NCS)$									480 m	486 m		
y vibration	485 vs	458 m	457 vs	457 w	456 vs	$457 \mathrm{w}$	460 vs		455 vs	455 w	461 vs	461 m
w vibration				400 vw		400 vw				400 vw		
t vibration	292 vs	288 m	288 vs ⁶		294 vs	293 m	295 vs		294 vs ^o		306 vs	305 m
$\nu_{\rm g}(\rm Sb-O)$							275 vs				288 vs	
$\nu_{\rm s}({\rm Sb-O})$								272 s				287 s
$\nu_{\rm s}({\rm Sb-Cl})$				275 vs			0.10 ·					0.0 5
t vibration	244 m	255 s	255 m	255 m	248 s		242 m		254 m	264 m	007	265 vs
	0.04										237 s	235 s
	234 m		09Å				00F		000			
		000	234 W	014 #		010 -	220 W	016	230 W	010	016	010 ***
X VIDIATION		222 VS	Z_{1Z} m	214 S		219 5	214 III 109 m	210 VS		219 VS	210 W	219 VS
$\delta(SD-A)$ and $\delta(SD-C)$			10.0				198 m		197			
$\delta(SD-X)$ and $\delta(SD-C)$			192 III				180 w		107 111			
v(Sb-R) and $v(Sb-C)$					188 116		100 ₩					
$v_a(Sb-Br)$					100 +3	161 vs						
vi vibration	158 w		162 m		162 w	101 43	158 w		160 w		150 m	150 m
	100 11		151 m		-02		140 m		200 11		136 mi	
			122 w								126 m	

^a Key: vs, very strong; vw, very weak; s, strong; w, weak; m, medium; ν_a , asymmetric stretch; ν_s , symmetric stretch; δ , bend; ir, infrared; R, Raman. ^b Band overlaps $\nu_a(Sb-X)$ vibration.

breakdown of the local symmetry approximation due to the coupling of the Sb–C and phenyl ring vibrations. Table VII lists the assignments made for the phenyl compounds.

The metal-sensitive antimony-phenyl vibrations found in $(C_6H_5)_3Sb$ are also observed for the $(C_6H_5)_3$ -SbX₂ series. The only vibrational mode which is shifted is the higher component of the tvibration, which is found at 270 cm⁻¹ in $(C_6H_5)_3Sb$ but at *ca*. 295 cm⁻¹ in the $(C_6H_5)_3SbX_2$ series.

The $\nu(\text{Sb}-\text{F})$ modes occur at higher frequencies in the phenyl compounds than in the methyl compound. The $\nu_a(\text{Sb}-\text{X})$ modes for $(C_6H_5)_3\text{Sb}Cl_2$ and $(C_6H_5)_3\text{Sb}(\text{NCS})_2$ are obscured in the infrared spectra by the higher component of the t mode which occurs at *ca.* 295 cm⁻¹. The $\nu_a(\text{Sb}-\text{O})$ mode for $(C_6H_5)_3\text{Sb}(\text{ONO}_2)_2$ appears at

275 cm⁻¹, corresponding to the value found for $(CH_3)_3$ -Sb(ONO₂)₂. As seen in Figure 5, two bands (at 306 and 288 cm⁻¹) appear in the region expected for the ν_a -(Sb-O) mode of $(C_6H_5)_3$ Sb(CH₃COO)₂. On deuterating the acetate group, the 288-cm⁻¹ band shifts to 277 cm⁻¹ but the 306-cm⁻¹ band remains unchanged. The 288cm⁻¹ band is therefore assigned to the ν_a (Sb-O) mode. The ν_a (Sb-Br) mode for $(C_6H_5)_3$ SbBr₂ appears at approximately the same position as was observed for the methyl compound. The ν_a (Sb-Br) mode, however, is at lower frequency in $(C_6H_5)_3$ SbBr₂ than in $(CH_3)_3$ SbBr₂. This might be accounted for by the absence of coupling between the ν_a (Sb-Br) and δ_{\perp} (Sb-C) modes in the phenyl compound.

Force Constants.—Several trends are observed in the force constants obtained for the methyl halides

Figure 5.—Infrared spectra $(300-200 \text{ cm}^{-1})$ of (A) $(CH_3)_{\delta}Sb-(CH_3COO)_2$ and (B) $(CH_3)_{\delta}Sb(CD_{\delta}COO)_2$.

(Table III). The equatorial Sb–C stretching force constant decreases slightly in the order $(CH_3)_3Sb_{aq}^{2+} >$ $(CH_3)_3SbF_2 > (CH_3)_3SbCl_2 > (CH_3)_3SbBr_2 > (CH_3)_3Sb$, indicating the strengthening of the equatorial Sb–C bond with an increase in the positive charge on the antimony atom. Although this trend might have resulted from the approximations used in the calculations, it is noted that a similar trend has been reported for the Sn–C stretching force constant in the series $K_2[(CH_3)_2-$ SnX₄]³⁰ (X = F, Cl, Br).

The weakening of the antimony-halogen bond by the methyl groups is also evident when the axial Sb-Cl stretching force constants in $(CH_3)_3SbCl_2$ and $SbCl_5$ are compared (Table VIII). Table VIII also includes a

TABLE VIII RELATIVE Sb-Cl AND P-F BOND ORDERS Urey-Bradley Pauling's Compd relation force const SbCl₅ 1.001.000.62 $(CH_3)_8SbCl_2$ 0.68 \mathbf{PF}_{5} 1.00 1.00

0.69

0.58

^a $D_{(n)} = D_{(1)} - 0.60 \log n$, where $D_{(n)}$ is bond length of order n and n < 1.

 $(CH_3)_3PF_2$

comparison of the relative strength of these two Sb-Cl bonds using Pauling's relationship.⁸¹ A similar effect

(30) C. W. Hobbs and R. S. Tobias, *Inorg. Chem.*, 9, 1037 (1970).
(31) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell University Press, Ithaca, N. Y., 1960, p 255.

has been noted for the series $(CH_3)_n PF_{5-n}$ (n = 3).¹³ We have included, for comparison, our values for the axial P–F stretching force constants for $(CH_3)_3 PF_2$ and PF₅ in Table VIII. Although the methyl groups weaken the axial antimony-halogen bonds, the force constants indicate that the antimony-halogen bonds still retain considerable covalent character.

Mention was made earlier of the controversy concerning the assignment of the two E' bending modes of MX_5 trigonal-bipyramidal molecules. We believe that the discussion of Bartell²⁴ strongly supports the assignment of the higher frequency to the axial bending mode. We have, therefore, reversed the original assignments made for the two E' bending modes in SbCl₅⁹ and (CH₃)₅Sb¹⁶ (Table IV). As Bartell has pointed out, the relative weakness of the axial bonds compared to the equatorial bonds is not a valid basis on which to conclude that the axial bending mode is of lower frequency than the equatorial bending mode. Rather than comparing stretching force constants (which have been empirically related to bond strength) it seems more appropriate to compare bending force constants. The Urey-Bradley bending and repulsive force constants for the two MX5 compounds we have examined (SbCl₅ and (CH₃)₅Sb) lend support to Bartell's argument. The X_{axial}-M-X_{eq} bending and repulsive force constants are larger than the X_{eq} -M- X_{eq} bending and repulsive force constants. This indicates that the axial bending and δ bending modes would encounter more resistance than the $\delta_{||}$ modes and might therefore be expected at a higher frequency. Bartell also indicated that strong coupling might be expected between these two E' bending modes. Holmes and Golen²⁵ concluded that this is the case for PF_{5} . Therefore, it seems more valid to refer to highly coupled modes rather than to try to distinguish between the different bending vibrations.

It has also been suggested that the two E' bending modes make up the intermolecular exchange coordinate for a pseudorotation process.⁹ The introduction of the angle-angle interaction force constant, $H_{\alpha\beta}$, into the Urey-Bradley force field was justified because of the possibility of pseudorotation in the MX₅ systems studied.⁹ It is necessary to include this force constant to fit the calculated and observed MX₅ E' bending frequencies. This particular force constant, however, is essentially zero in the (CH₃)₃SbX₂ series. This is interpreted as indicating that pseudorotation is much less likely to occur in this series.

Acknowledgments.—We gratefully acknowledge the financial support from the National Research Council of Canada. We are also grateful to Professor K. Nakamoto for the use of a Hitachi Perkin-Elmer F1S-3 infrared spectrophotometer and a Spex-Ramalog Raman spectrophotometer.